Finitely Generated Invariants of Hopf Algebras on Free Associative Algebras

نویسندگان

  • VITOR O. FERREIRA
  • LUCIA S. I. MURAKAMI
چکیده

We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scalar. This generalizes an analogous result for group actions by automorphisms obtained by Dicks and Formanek, and Kharchenko.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constants of Weitzenböck Derivations and Invariants of Unipotent Transformations Acting on Relatively Free Algebras

In commutative algebra, a Weitzenböck derivation is a nonzero triangular linear derivation of the polynomial algebra K[x1, . . . , xm] in several variables over a field K of characteristic 0. The classical theorem of Weitzenböck states that the algebra of constants is finitely generated. (This algebra coincides with the algebra of invariants of a single unipotent transformation.) In this paper ...

متن کامل

Hopf-galois Extensions with Central Invariants

We study a class of algebra extensions which usually appear in the study of restricted Lie algebras or various quantum objects at roots of unity. The present paper was inspired by the theory of nonrestricted representations of restricted Lie algebras and the theory of quantum groups at roots of unity where algebras are usually finitely generated modules over their centers. Our objective is to d...

متن کامل

A Hilbert-nagata Theorem in Noncommutative Invariant Theory

Nagata gave a fundamental sufficient condition on group actions on finitely generated commutative algebras for finite generation of the subalgebra of invariants. In this paper we consider groups acting on noncommutative algebras over a field of characteristic zero. We characterize all the T-ideals of the free associative algebra such that the algebra of invariants in the corresponding relativel...

متن کامل

A Quantum Analog of the Poincare–birkhoff–witt Theorem

We reduce the basis construction problem for Hopf algebras generated by skew-primitive semi-invariants to a study of special elements, called “super-letters,” which are defined by Shirshov standard words. In this way we show that above Hopf algebras always have sets of PBW-generators (“hard” super-letters). It is shown also that these Hopf algebras having not more than finitely many “hard” supe...

متن کامل

g-ENDOMORPHISM ALGEBRAS, AND DYNKIN POLYNOMIALS

Recently, A.A. Kirillov introduced an interesting class of associative algebras connected with the adjoint representation of G [Ki]. In our paper, such algebras are called g-endomorphism algebras. Each g-endomorphism algebra is a module over the algebra of invariants k[g]; furthermore, it is a direct sum of modules of covariants. Hence it is a free graded finitely generated module over k[g]. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005